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Abstract— The objective of this paper is to provide a self-
supervised learning framework for video representation learn-
ing in order to classify human interactions. The following
contributions are made: (i) we introduce a novel architecture,
dubbed "Sync3D", that aims to synchronise human tracks
to predict interactions by exploring contrastive loss on learnt
I3D feature vectors; (ii) we provide a data sampling strategy
based on temporal and spatial alignment to create positive
and negative samples; (iii) lastly, we evaluate the quality of
our proposed learnt representation on the downstream task
of human interaction (or action) classification. We achieve a
final top1 classification accuracy 75.5% on our validation set,
outperforming I3D’s classification accuracy on the TV Human
Interaction dataset.

I. INTRODUCTION

Interest in areas of self supervised learning, as opposed
to fully supervised methods, have seen a steady growth
over the past years. This interest primarily stems from
the explosion of data freely available on the web, as such
manually annotating large amounts of data seems like a
tedious task that could be avoided with self supervision.
Videos are an especially popular form of data as the
abundance of such data coupled with the variety, from
sources such as YouTube, is quite large.

One challenging task with video data is to detect human
interactions in a given video. This task is useful in video
annotation, automated surveillance, and content-based video
retrieval for quick search results [1]. The challenge occurs
because this task involves both tracking humans as well
as learning the semantics of the interaction taking place.
Previous approaches study CNN architectures, learn feature
representations or decouple the visual and temporal aspects
of human interactions by using LSTMs [3]. However, these
methods suffer in training scenarios with low amounts of
annotated data as learning feature representations require
large amounts of annotated training data.

In this work, we propose a novel self-supervised method
(termed "Sync-3D") that learns spatio-temporal video em-
beddings to enable the detection of human interactions.
Our work combines the I3D architecture used for action
localisation [2] and the SyncNet architecture for video-
audio synchronisation [4] and casts the problem of human
interaction detection as one of motion synchronisation both
spatially and temporally.
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II. RELATED WORK

In this section, we introduce the three key areas related to our
problem: action recognition, self-supervised representation
learning, and the study of human interaction in a visual
context. While many works in the recent past have studied
action recognition, there are few that target human interac-
tions [5], [6]. The existing works can mainly be seen as
three different categories: no interaction (action or motion
recognition), human-object interaction, and lastly human-
human interaction.

A. Action Recognition
The actions of the humans in each frame are indicative of po-
tential interactions between them. There has been significant
progress made in the areas of video action recognition [7],
[8], [9]. In these approaches, a notable improvement from
pre-training was reported ; therefore, in this work we adopt
this pre-training and use an action recognition module pre-
trained on ImageNet. Furthermore, in these variants of a two
stream architecture, optical flow has been reported to be a
powerful representation showing great improvements in the
task as compared to using only RGB frames. While in this
work we focus solely on RGB frames, we argue that optical
flow can increase the robustness of representation learning
and it can be an interesting line of future work.

B. Self-Supervision
Due to the availability of large-scale data, the use of deep
neural networks has shown significant success in representa-
tion learning over the past years. For both images and videos,
using convolutional architectures has been widespread due to
desirable properties such as shift-invariance and hierarchical
learning. However, annotating these copious amounts of
data is a cumbersome task, making self-supervised training
of these architectures a necessity. The recent advances on
self-supervised learning can be split into two categories
based on the application domain: learning from images or
learning from videos. In the areas of image classification,
self-supervision has seen steady progress [10] through tasks
such as inpainting [11], image colourisation [12] and jigsaw
puzzle solving [13]. In the video domain, recent approaches
aim to learn distinct instances from each other through
contrastive learning [14], [15].

C. Human Interaction
Several works have studied human interactions in videos
in terms of human-object interaction as well as a few in
human-human interactions [16], [17]. A popular line of
work has included the use of deep neural architectures



to learn relationships between humans by extracting rich
feature representations. Past works such as LAEO-Net [18]
address the problem of studying human-human interaction
by studying head-orientation however using deep neural
approaches goes back to using well annotated data. To tackle
this problem, in this paper we prose a combination of self
supervised learning with action recognition to allow for
human interaction recognition in videos without the need
for large scale annotation.

III. MOTION SYNCHRONISATION

In this section, we describe the model architecture, the
learning framework, the self-supervised strategy, and the
curriculum training used to learn progressively more difficult
negatives.

A. Architecture

Fig. 1. Sync3D: Architecture to perform motion synchronisation. The
Sync3D architecture uses the base structure from SyncNet itself but uses
I3D to perform action recognition on inputs of human tracks. We chose to
use a pre-trained ImageNet on the Kinetics-400 dataset [ref] for each of the
two tracks.

We propose a novel architecture to learn video represen-
tations to perform motion synchronisation, called Sync3D.
Here, we treat the problem of learning human interactions
in video as one of both spatial and temporal synchronisation
between two human tracks. As such, our base architecture
is derived from SyncNet [4]; however, instead of syncing
audio and video components, we sync two human tracks. In
order to perform feature extraction on these input tracks, we
turn to action recognition. In the proposed model, we choose
the I3D architecture, introduced in [2], as our desired action
recognition engine.

B. Learning Framework

The goal of Sync3D is to learn interaction labels for humans
in videos through action recognition, where these labels are
derived from verifying temporal and spatial alignment of
tracks. As discussed in the previous sub-section, we use a
two-stream convolutional neural architecture which takes
as input two human tracks, with each branch being an I3D
network. This architecture gives as output an interaction
label of 1 if the two tracks are predicted to be synchronized

and 0 otherwise. In this section, we discuss the loss used
for training and the sampling strategy to create positive and
negative data pairs.

1) Contrastive Loss: The training objective for the net-
work is to report a target closer to one for tracks in which
humans are interacting, and a target closer to zero otherwise.
Contrastive Loss generally refers to the training paradigm
where similarity scores of positive labels are boosted above
those of the negative labels, making this loss suitable for
our task. As done in SyncNet, we minimise the following
objective function, first introduced in [19] to train Siamese
networks like ours:

L =
1

2N

N∑
i=1

yn × d2n + (1− yn)max(margin− dn, 0)
2

Here, we compare the similarity between the feature vectors
of track 1 and track 2 after taking their output from the
I3D action classifier. Then using the loss function, we
minimise the distance between them if they are positive
pairs otherwise we penalise the entry.

2) Data Sampling: Here we detail the sampling strategy
to produce data pairs from a single video clip. We also
classify three categories of negative samples, allowing for a
curriculum learning strategy to train Sync3D.

Preprocessing of Video Clips: In order to create the
data pairs, some preprocessing steps are required. From
each video clip, we crop every frame to bounding boxes
containing the upper bodies of the humans present. We then
enlarge this crop by 20% to include background as part of
our track. Finally, this cropped frame is placed on a neutral
224× 224 canvas.

Positive Pairs: We define human interaction as consisting
of two components: spatial and temporal alignment. In our
use case, we measure spatial alignment with a simple metric
based on a threshold: Intersection-over-Union (IOU). Thus,
positive pairs are formed with pairs of human tracks from
the same video such that their mean IOU over the temporal
length is larger than a threshold which we set to be 0.1.

Negative Pairs: Using the complement of how we have
defined positive pairs, negative pairs can be placed into
three categories as follows:

• Easy Negatives: Here we consider videos that are
neither temporally nor spatially aligned by considering
tracks from two distinct videos. These negative pairs
are considered easy to learn due to no or little
similarity between each pair of sequences of frames,
thus resulting in low similarity between predicted and
ground-truth features.



Fig. 2. A sample clip for which the preprocessing stage has been shown.
As the mean IOU computed for the tracks is larger than the threshold, this
is counted as a positive sample

• Medium Negatives: Now, we consider tracks that are
temporally aligned but are not spatially aligned. This
corresponds to considering tracks from the same video
that do not meet the IOU threshold.

• Hard Negatives: Lastly, we consider tracks that are
spatially aligned but are not temporally aligned. Here,
we consider the tracks we classify as interacting based
on the IOU threshold and apply a temporal shift of n
frames, producing two tracks that are not temporally
aligned however do maintain spatial alignment. These
are considered as hard negatives due to how close their
score will be to the positive pairs. In our experiments
we set n=25 frames.

Fig. 3. Sampling strategy to obtain negative pairs. Top shows an easy
negative pair, Bottom shows a hard negative

Curriculum Learning Strategy

At the training step, we use a 1
4 and 3

4 sampling probability
for positive and negative pairs respectively. However, with
the three different categories of negative pairs we have
much more than 3N pairs of negatives where N represents
the number of positive pairs. Thus, we must decide on a
second sampling strategy to choose negative pairs that allow
Sync3D to perform the best.

We introduce a curriculum learning strategy by continuously
increasing the number of hard negatives after certain steps.
Initially, we only incorporate the easy negatives, i.e. sample
negative pairs from different videos. After the network
has learnt this task, we incorporate the medium and hard
negatives. By doing so, we force the network to learn how
to distinguish between interactions (or not) in increasingly
similar videos, thus gradually increasing the difficultly of the
learning process. In this case, the network learns represen-
tations for the interactions themselves rather than trying to
distinguish with, for instance, the background of the videos.

IV. EXPERIMENTS AND ANALYSIS

In this section, we describe the dataset used and the imple-
mentation details for Sync3D training. We further describe
the downstream task of action recognition to evaluate the
representation learnt from our self-supervised methodology.

A. Dataset

We use the TV Human Interaction Data (TV-HID) for self-
supervised Sync3D training, which contains 300 video clips
extracted from 23 different TV shows split into four interac-
tion classes: hand shake, high five, hug, and kiss with each
class having 50 videos [20]. In addition to these interaction
classes, the remaining 100 videos are composed of negative
samples where no interaction takes place. For each human in
each frame in each video, we have the following annotations:
interaction label, head orientation, and bounding box for
the upper body. These annotations are used to perform the
downstream evaluation. We chose to use the test/train split
as provided by the dataset, which is a 50/50 split.

Interaction Class % Positive % Negative
Hand Shake 63.45 36.55
High Five 37.25 62.75

Hug 100 0
Kiss 89.10 10.90

Negatives 0 100

TABLE I
DETECTION ACCURACY FROM OUR SAMPLING STRATEGY

From Table 1, we note that our data sampling strategy in
successful in three classes: kiss, hug, and negatives. Further,
it performs with acceptable accuracy on the class Hand
Shake, however it performs poorly on High Five. Hence,
our self-supervised methodology misses some examples of
positive interactions. In Fig. 4, we see an example from the
interaction class "Hand Shake" but due to the IOU being 0,
our strategy labels this pair as a negative.

B. Implementation Details

As discussed in Section III A, Sync3D uses the I3D
architecture as the feature extractor. During its training, we
use a non-linear projection layer which is later removed
for downstream task evaluation as done in SimCLR [21].
For input, we take apply the sampling strategy to get two
25-frame RGB human tracks, at 25 fps, covering 1-second
interactions. Each track is resized to 224 × 224 pixels.



Fig. 4. Here the bounding boxes do not intersect leading to a false negative
according to our sampling strategy.

During the training step, we apply data augmentation
techniques such as: random crops, random horizontal flips,
image noise for each frame. These augmentations are
applied consistently across each frame so that our network
does not try to learn low level information. In order to
maintain the 25-frame temporal window and to maximise
the possibility of detecting positive samples, we choose to
use the centre-most 25 frames as our target temporal window.

We train our network for 800 epochs using the SGD op-
timiser using an initial learning rate of 10−3 and a weight
decay set to 10−5, we also schedule our learning rate to drop
to 10−4 and 10−5 at epochs 300 and 600 respectively. Due to
sparsity of the data, we kept the batch size as relatively small
but we applied batch normalisation on it as a regularisation
method. We also applied dropout probability of 0.1 as an
additional regularisation method. To apply our curriculum
learning strategy, we describe two settings: Easy + Medium
negatives and Hard negatives. In the first case, we do not
incorporate any hard negatives in the data sampling so we
samples from positives, and easy and medium negatives. In
the second case, we include 33% hard negatives in the 3

4
negative samples. All our models are trained end-to-end.

C. Evaluation Methodology

Our self-supervised architecture is first trained on TV-HID
tracks to learn an interaction label of 1 or 0. This representa-
tion is then evaluated by its performance on the downstream
task of Interaction Recognition on TV-HID. Here "Inter-
action Recognition" refers to the recognition of the human
interaction classes of TV-HID. To evaluate this, we use a
linear probe setting: the feature encoder is frozen, and a
single layer perceptron is trained with cross-entropy loss.
Since we are evaluating for human interaction recognition,
we use the labels from TV-HID to give us five classes. We
report top1 accuracy on both the downstream evaluation task
of interaction classification in a fully supervised setting as
well as the results from our self-supervised training. Recall
that the top1 accuracy in the self-supervised setting refers
to how often the network chooses the right interaction label
and does not have any connection to the ground truth action
classes. However, in the fully supervised setting, the top1

accuracy indicates the interaction classification accuracy on
TV-HID.

D. Interaction Classifier

During the supervised learning stage, we pass 2 human tracks
as input (the same as for the self-supervision training, each
track is in R25×224×224×3) and these tracks and then encoded
as a sequence of feature maps using the frozen weights
from the Sync3D training cycle. This encoded sequence is
then passed onto a fully-connected layer and softmax for
interaction classification. The classifier is trained using the
SGD optimiser with an initial learning rate of 10−3 and
weight decay of 10−5. During the testing step, tracks from
the validation set are sampled with the same procedure as
in the training step ( 14 positive and 3

4 negative) and no
augmentations are applied. The softmax probabilities are
averaged to give the final result.

E. Analysis

First, we present the results of the self-supervised learning
by Sync3D on TV-HID. We achieve an overall accuracy of
50.4% in the training set and 42.6% in the validation set.
As we will discuss in the next section, we faced significant
issues in convergence of the loss function due to low
training data; however, even with this minimal performance,
we managed to receive interesting results on the downstream
evaluation task.

In the downstream task, we compare our method against I3D
on top1 classification accuracy. Here, our method outper-
forms the use of I3D features. Interestingly, this shows that
while our methodology did not perform well on the self-
supervised task, it still learnt a useful representation which
improved its performance on human interaction classifica-
tion. In the table below, we experiment with the use of our
curriculum learning strategy and see that with the introduc-
tion of hard negatives, we are able to beat I3D’s performance
on this task (73.2% for I3D vs. 71.3% for Sync3D without
curriculum learning and 75.5% with curriculum learning).
In Fig. 5, we have displayed the confusion matrix for
Sync3D and can make some noteworthy conclusions. Our
learning representation seemed to have worked well for the
classes Hug, Kiss, and Negative however we have poorer
performance on Hand Shake and High Five. Interestingly,
these are the same classes in which our data sampling
strategy failed to perform well. Thus, improving the data
sampling has potential to improve the classification accuracy
and overall improve our learnt representation.

Method setting curr. learning % top1 acc.
I3D Normal 7 73.2

Sync3D Easy + Medium Neg 7 71.3
Sync3D Hard Neg 3 75.5

TABLE II
TOP1 CLASSIFICATION ACCURACY FOR I3D AND SYNC3D USING

DIFFERENT CURRICULUM LEARNING STRATEGIES



Fig. 5. Visualising the confusion matrix points to some interesting
classification errors made by Sync3D. Note how the results point to more
ambiguity in classifying handshakes against high fives, but both of these
interactions consist of similar actions making these classifications somehow
correct even while they are wrong.

V. DISCUSSION

Due to the small size of the dataset of human interactions,
our current approach was not able to sufficiently learn
from it. With a 50/50 split, a total of 216 data pairs were
developed using the sampling strategy for training, out of
which 54 pairs were labelled as interacting and 162 were
negative pairs. As such the data is quite limited leading to
difficulties in convergence during training. As we see in Fig.
6, while globally there is not much change observed, on a
small scale we can see some fluctuations leading to minimal
convergence. This leads us to believe that even in this low
data scenario, Sync3D manages to learn some information
about the input human tracks and their interactions.

Fig. 6. Training loss achieved with training a three way classification (hug,
kiss, negative) for the first 300 epochs.

Further, as we noted in Section IV A, our data sampling
strategy also missed a significant portion of examples from
the Hand Shake and High Five classes. To alleviate this
error, one could use full body detections as opposed to upper
body bounding boxes. In Fig. 7, we have displayed the two
possible detection methods side by side to show the efficacy
of detectron2 detections and the failure of our strategy on this
simple example. We note that by using full body detections
we are able to successfully get bounding box interaction as
soon as the interaction is due to take place (in this example,
as soon as the two characters approach each other for a hand
shake). However, looking at the upper body bounding boxes,

we note that even during the hand shake (i.e. when the action
is taking place), the bounding boxes do not intersect leading
to a false negative by our strategy. We leave this extension
as future work.

Fig. 7. Top: Detectron2 detection pre-Hand Shake, Bottom: Upper body
bounding box during Hand Shake

VI. CONCLUSION

In this paper, we have presented a novel learning representa-
tion system based on self-supervision for human interactions.
Here, we exploit the idea of video-audio synchronisation to
perform human track synchronisation both temporally and
spatially. To that extent, we propose the use of temporal and
spatial alignment to sample positive and negative pairs of
interacting tracks. Although the dataset led to limited accu-
racy on the self-supervision model itself, we note favourable
performance on the downstream task of interaction recogni-
tion against the I3D features. For future work, we hope to
incorporate the use of optical flow to encode frames as it has
shown significant performance boost in related works and we
also suggest the exploration of recurrent neural architectures
to learn sequential dependence along with spatio-temporal
information.
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