Tyrosine Kinase

Sonal Sannigrahi

June 2020

1 Introduction to In and Out Kinases

For each Kinase, there is a conserved activation loop responsible for regulating kinase activity. This
activation loop is characterised by DFG and APE motifs. Most kinase inhibitors bind in the region
of the ATP binding site, amongst these the Type 1 inhibitors bind to the “Active Conformation” and
are associated with the DFG-in conformation of the activation loop. Likewise, the Type 2 inhibitors
bind to the “Inactive Conformation” of the same, and are associated to a DFG-out conformation.
In the diagram below, the activation loop and the subsequent DFG-in and DFG-out conformations
are marked out:

State A State B State C
active inactive (Src/Cdk — like) inactive (Abl/c-Kit — like)
(DFG Asp-in) (DFG intermediate) (DFG Asp-out)
A helix oC r

P-loop

P

~ activation loop
—

N\
J
/
-
DFG-motif
£

,ﬂ
i > .
¢ >

Figure 1: Structurally defined conformational states of the c-Src and Abl kinase domains. Image
from Cancer Research

2 Sequence Alignments and Discriminating Positions

In order to compare sequences of proteins, it’s necessary to consider the correct alignment of the
same. For example, we must consider gaps in the sequences and possibly shifts within recurring
motifs. An example can be seen at the end of this document.

To mark out the IN versus OUT conformations, we shall look at the most closely aligned version
of the sequences.

3 Entropy and Scoring Criterion

In a protein sequence, we define the Shannon Entropy as follows:

M
H=-Y PlogpP
i=1

Where P, represents the fraction of residues of amino acid type ¢, and M is the number of amino
acid types (20). In order to interpret how conserved or variable a given sequence alignment is, we
look at the value of H which ranges from 0(completely homogeneous) to 4.322(completely variable).
Typically H > 2 is considered to be variable while H < 1 is highly conserved. However, it is to be
noted that to make such conclusions we must consider over approximately 100 sequence alignments.

With this definition of entropy, we can construct a scoring function which would allow us to determine
if a position is a discrimination amino acid position or not. A good discriminating position should
split the sequence alignment into two relatively conserved classes. If considering these two classes
separately, joining them back together should therefore result in a high entropy gain. Thus, we
can define our scoring function as:

Score(S) =1(S)— H(S1) — H(S2)

Here, S represents the sequence column we are considering, 1(S) is the initial entropy of the whole
sequence column, H(S7) is the entropy of the first class as determined by the discriminating position,
and H(S3) is the entropy of the second resulting class. Along with a high entropy gain, we should
also look to minimise the entropy of the two classes themselves.

As the distribution of the two classes of DFG-in and DFG-out conformations is never quite equally
split, the score function needs to be updated to account for the individual proportions of the sequence
columns occupied by each class.

Score(S) =1(S) — w1 H(S1) — w2 H(S2)

Here, the weights are as follows:

wy = %, with I/; and Iy being the number of positions in the column occupied by class 1 and 2
respectively.
wy = 112'}‘;2, with [/; and l; being the number of positions in the column occupied by class 1 and 2
respectively.

3.1 Defining new score function

Now, we want to calculate I(S), which is essentially going to be the same entropy as before but with
additional factors. The goal is to calculate the entropy as if the two classes had the same size. In
order to do so, we will redefine probabilities and size of one class, let’s say class 1, so that it has the
same size as class 2.

Assume we initially had /; amino acids in class 1 and ls amino acids in class 2. Let’s consider one
type of amino acid in class 1 and name it A. Let a be the number of this amino acid type in the class
1. Let its probability be p. Then p = ﬁ Since we want to resize class 1 to the size of class 2, we
will have new number of amino acids of this type and it will be a’ = a% and its new probability in
population of two classes of the same size is p’ = % = g. For the amino acid in class two, we also
have to assign a new probability and it will be p’ = i = L where p was its probability in class 2.
Once we have calculated new probabilities, we can proceed with usual Shannon entropy to calculate

I(S).

Let’s analyze few simple cases to see if our model for score function gives reasonable results.

case 1:

We have class 1 of [elements of type A and class 2 of [, elements of type B.
Since classes are homogeneous, H(S1) = H(S2) = 0.

pa =1, pp = 1. Let’s calculate new probabilities: p/y = &* and piz = 5.

Assume type A and B are the same. When we merge two classes we get one homogeneous class
and its entropy is 0, so I(S) = 0. Entropy gain is equal to 0 which is exactly what we wanted to obtain.

Assume type A and B are different. Then I(s) = —2x 3 *In(3) = —In(3) = In(2). Again this result
is expected since we rescaled the classes to the same size. The entropy gain is score = In(2) - 0 - 0

= In(2).

case 2:

Assume that classes 1 and 2 have all different amino acids each. In class 1 there are 20 different
amino acids with same probabilities and in class 2 there are 20.

N

H(S1) = —20 * 551n(55) = In(20)
H(S2) = —20 551n(55) = In(20)

I(S) = =20 % (75 + 35)In(55 + 15) = In(20)

score(S) = W —In(ly) — In(lz)

Note that the entropy of individual classes is the same as I(S) so entropy gain is negative, which
means that this configuration is highly undesirable, which is true. We want more or less homogeneous
individual classes with a heterogeneous merged class.

3.2 Label Based Score

Another scoring method considered was one based on the DFG-In and DFG-Out labels of the se-
quences.

Consider a particular alignment column with two known subsets A and B. Let S4 and Sg be the
sequence entropies of each subset. Now let us consider the column, not with the amino acid types,
but with the known In/Out labels. Now, for each subset A and B, we can compute another entropy,
S’y = the entropy of subset A with its I and O labels:

1o _Ain Ain _ Ao Aout
SA T Atotal ln(Atotal) Atotal ln(Atotal)

We calculate a similar entropy for the subset B. Now let us label S4 and Sp to be the total sequence
entropies, now a good score function would be:

Score = -5 — S5 —Sa—Skp

The first two terms will push the subsets to match the true In/Out subsets while the next two terms
will push the subsets to have high conservation.

4 Monte Carlo Method

Using the scoring function as described above, we can use a Monte Carlo Method to compute
the best discriminating position for a given sequence alignment.

from scipy.stats import boltzmann #used for distribution
import random

def entropy(list_input):
"""Calculate Shannon’s Entropy per column of the alignment (H=-\sum_{i=1}"{M} P_i
\’log_z\,P_i)“""

import math

unique_base = set(list_input)

M = len(list_input)

entropy_list = []

Number of residues in column

for base in unique_base:
n_i = list_input.count(base) # Number of residues of type i
P_i n_i/float(M) # n_i(Number of residues of type i) / M(Number of residues

in column)
entropy_i = P_ix(math.log(P_i,2))
entropy_list.append(entropy_i)

sh_entropy = -(sum(entropy_list))

return sh_entropy

; def entropyl(cl, c2):

"""Computes entropy of two classes combined while also taking into account the
size of classes"""
import math

unique_base = set(cl).union(set(c2))
M1 = 1len(cl)
M2 = 1len(c2)

entropy_list = []
Number of residues in column
for base in unique_base:
n_1 = cl.count(base) # Number of residues of type i

90

93
94
95
96

97

99

def

def

def

def

n_2 = c2.count (base)
if M1 == O:

P_i

residues in column)

elif M2 == 0:

P_i = n_2/float(M1)
else:

P_i = n_1/float (2%M1) +n_2/float (2%M2)
entropy_i = P_ix(math.log(P_i,2))
entropy_list.append(entropy_i)

sh_entropy = -(sum(entropy_list))
return sh_entropy

score(S, cl1, c2):

nnn

Computes the Score for a sequence column by the scoring method

Input: S = sequence entropy, cl = class 1, c2 = class 2
Output: score of S

#Currently working on fixing implementation

cl_list list(cl.keys ())
c2_list = list(c2.keys())
1_1 = len(cl_list)
1_2 = len(c2_list)
if c1_list != [] and c2_list !'= []:
I_S = entropyl(cl_list,c2_list)
H_C1 = entropy(cil_list)
H_C2 = entropy(c2_list)
Score = I_S - H_C1/2 - H_C2/2 #-log(2,2)
else:
Score = -1000
return Score

Insertion(S, class_1, class_2):
"""Adds randomly one new X
returns class 1 and class 2"""

#choosing a spot where to put X

if len(class_2) > 1:
rand_choice = random.sample(set(class_2.keys()) ,1) [0]
del class_2[rand_choice]

class_1[rand_choice] = S[rand_choicel]
return (class_1,class_2)

Deletion(S, class_1, class_2):
"""Deletes randomly one X
returns class 1 and class 2"""

#choosing a spot where to delete X

if len(class_1) > 1:
rand_choice = random.sample(set(class_1.keys()) ,1) [0]
del class_1[rand_choice]

class_2[rand_choice] = S[rand_choice]
return (class_1,class_2)
Swap (S, class_1, class_2):
"""swap two randomly chosen X
returns class 1 and class 2"""
#choosing spots to swap X
if len(class_1) != 0 and len(class_2) != 0:

rand_choicel = random.sample(set(class_1.keys()),1) [0]
rand_choice2 = random.sample(set(class_2.keys()),1) [0]

del class_1[rand_choice1l]

n_2/float(M2) # n_i(Number of residues of type i) / M(Number of

def

del class_2[rand_choice2]

class_1[rand_choice2]
class_2[rand_choicel]
return (class_1,class_2)

MonteCarlo (S, max_iter,
nnn

Computes the discriminating position for a sequence column

S[rand_choice2]
= S[rand_choicel]

threshold) :

Input: S = sequence column, max_iter

acceptance for boltzmann distribution (between O and 1)

Output: 2 classes

n = len(S)
S_copy = S.copy()

= max iterations,

num_classl = int (0.30*n) #number in classl

print (num_class1)
for _ in range(num_class

rand_position = random.randint (0,len(S)-1)

while S_copyl[rand_po
rand_position =
S_copyl[rand_position

1): #intialisation

sition] == ’X’:
random.randint (0,len(S)-1) #reselect if used position

]=’X’

#Monte Carlo with Insertions and Deletions

s_entropy = entropy(S)

n_iter = 0 #counter for
class_1 = dict() #class
class_2 = dict() #class
for i in range(len(S)):

if S_copyl[i] == ’X’:
class_1[i] =S[i]
else:
class_2[i] =S[il

print ("initial class cil:
print (class_1)
print (’\n initial class
print (class_2)

res = score(S, class_1,

while n_iter < max_iter:
r = random.random()

if r < 0.25: #25% chance to do an insertion

iterations
1 determined
2 is rest of

\n")
c2: \n’)
class_2)

(c1,c2) = Insertion(S, class_1,

elif r < 0.5: #25% chance to do a deletion

(c1,c2)

Deletion

else: # 50% chance t

(cl1,c2) Swap (S,

res2 = score(S, ci1,

(S, class_1,

o do a swap

by X’s
S

class_2)

class_2)

class_1, class_2)

c2)

#Boltzmann Distribution coefficient

delta_S = abs(res2 - res)
lambda_, N = 0.2, 19

size = 6000

indl = random.randint (0,size - 1)

rv = boltzmann.rvs (1l

ambda_, N, size=size)/N

threshold = threshold of

beta = rv[indl] #pick float between O and 1 with boltzmann distribution

if (res2 > res):

res = res2
class_1 = c1
class_2 = c2
elif (betaxdelta_S >
res = res2
class_1 = c1
class_2 = c2

threshold) :

#if better score i.e.

higher entropy gain

183 n_iter += 1

184 print (res)

185 print ("\n")

186 print (cl)

187 print ("\n")

188 print (c2)

189

190 print ("\n\n")

191

192

193 return class_1, class_2

194
195

Below is an example of sequence alignment as mentioned earlier:

(a) 20 0

EBscherichia eoli
hyra purpurea

Thicbacillus ferrooxidans
Streptemyces clavuligerus
Cyanidieschyzon merclae
Human
Rhesus monkey
Sheep
Rabbit
Chicken
Dictyostelium discoideum
Dictyosteliua discoeideum
Drosophila melanogaster
Caenorhabditis elegans
Ricinug communis
Neurospora crassa

o
3
£

'«
G
a
a

DF & WCGBPC
BRPERP eoccocoen CLCE 0L 08 1 0000406 06 2004 01 PRR

Escherichia coli
Porphyvra purpurea
Thicbacillus ferrooxidans
Streptomyces clavuligerus
Cyanidioschyzon merclae
Human

Rhesus monkey

Sheap

Rabbit

Chicken

Dictyostalium discoideum
Dictyestelivm discoideum
Drogophila melanogaster
Caenorhabditis eleagans
Ricinus ecommunis
Neurospora crassa

D H g ca Lp
RRfRoooe aoxae B8P Bpp BPEBRRRRARE wovomeuunuow

Figure 2: Alignment of amino acid sequences of E.coli thioredoxin and homologues.

