
Tyrosine Kinase

Sonal Sannigrahi

June 2020

1 Introduction to In and Out Kinases

For each Kinase, there is a conserved activation loop responsible for regulating kinase activity. This
activation loop is characterised by DFG and APE motifs. Most kinase inhibitors bind in the region
of the ATP binding site, amongst these the Type 1 inhibitors bind to the “Active Conformation” and
are associated with the DFG-in conformation of the activation loop. Likewise, the Type 2 inhibitors
bind to the “Inactive Conformation” of the same, and are associated to a DFG-out conformation.
In the diagram below, the activation loop and the subsequent DFG-in and DFG-out conformations
are marked out:

Figure 1: Structurally defined conformational states of the c-Src and Abl kinase domains. Image
from Cancer Research

2 Sequence Alignments and Discriminating Positions

In order to compare sequences of proteins, it’s necessary to consider the correct alignment of the
same. For example, we must consider gaps in the sequences and possibly shifts within recurring
motifs. An example can be seen at the end of this document.
To mark out the IN versus OUT conformations, we shall look at the most closely aligned version
of the sequences.

3 Entropy and Scoring Criterion

In a protein sequence, we define the Shannon Entropy as follows:

H = −
M∑
i=1

Pilog2Pi

Where Pi represents the fraction of residues of amino acid type i, and M is the number of amino
acid types (20). In order to interpret how conserved or variable a given sequence alignment is, we
look at the value of H which ranges from 0(completely homogeneous) to 4.322(completely variable).
Typically H > 2 is considered to be variable while H ≤ 1 is highly conserved. However, it is to be
noted that to make such conclusions we must consider over approximately 100 sequence alignments.

1

With this definition of entropy, we can construct a scoring function which would allow us to determine
if a position is a discrimination amino acid position or not. A good discriminating position should
split the sequence alignment into two relatively conserved classes. If considering these two classes
separately, joining them back together should therefore result in a high entropy gain. Thus, we
can define our scoring function as:

Score(S) = I(S) −H(S1) −H(S2)

Here, S represents the sequence column we are considering, I(S) is the initial entropy of the whole
sequence column, H(S1) is the entropy of the first class as determined by the discriminating position,
and H(S2) is the entropy of the second resulting class. Along with a high entropy gain, we should
also look to minimise the entropy of the two classes themselves.

As the distribution of the two classes of DFG-in and DFG-out conformations is never quite equally
split, the score function needs to be updated to account for the individual proportions of the sequence
columns occupied by each class.

Score(S) = I(S) − w1H(S1) − w2H(S2)

Here, the weights are as follows:

w1 = l1+l2
2l1

, with l1 and l2 being the number of positions in the column occupied by class 1 and 2
respectively.

w2 = l1+l2
2l2

, with l1 and l2 being the number of positions in the column occupied by class 1 and 2
respectively.

3.1 Defining new score function

Now, we want to calculate I(S), which is essentially going to be the same entropy as before but with
additional factors. The goal is to calculate the entropy as if the two classes had the same size. In
order to do so, we will redefine probabilities and size of one class, let’s say class 1, so that it has the
same size as class 2.

Assume we initially had l1 amino acids in class 1 and l2 amino acids in class 2. Let’s consider one
type of amino acid in class 1 and name it A. Let a be the number of this amino acid type in the class
1. Let its probability be p. Then p = a

l1
. Since we want to resize class 1 to the size of class 2, we

will have new number of amino acids of this type and it will be a′ = a l2
l1

and its new probability in

population of two classes of the same size is p′ = a′

2l2
= p

2 . For the amino acid in class two, we also
have to assign a new probability and it will be p′ = a

2l2
= p

2 where p was its probability in class 2.
Once we have calculated new probabilities, we can proceed with usual Shannon entropy to calculate
I(S).

Let’s analyze few simple cases to see if our model for score function gives reasonable results.

case 1:
We have class 1 of l1 elements of type A and class 2 of l2 elements of type B.
Since classes are homogeneous, H(S1) = H(S2) = 0.
pA = 1, pB = 1. Let’s calculate new probabilities: p′A = pA

2 and p′B = pB

2 .

Assume type A and B are the same. When we merge two classes we get one homogeneous class
and its entropy is 0, so I(S) = 0. Entropy gain is equal to 0 which is exactly what we wanted to obtain.

Assume type A and B are different. Then I(s) = −2 ∗ 1
2 ∗ ln(1

2) = −ln(1
2) = ln(2). Again this result

is expected since we rescaled the classes to the same size. The entropy gain is score = ln(2) - 0 - 0
= ln(2).

case 2:

Assume that classes 1 and 2 have all different amino acids each. In class 1 there are 20 different
amino acids with same probabilities and in class 2 there are 20.

2

H(S1) = −20 ∗ 1
20 ln(1

20) = ln(20)
H(S2) = −20 ∗ 1

20 ln(1
20) = ln(20)

I(S) = −20 ∗ (1
40 + 1

40)ln(1
40 + 1

40) = ln(20)

score(S) = ln(4l1l2)
2 − ln(l1) − ln(l2)

Note that the entropy of individual classes is the same as I(S) so entropy gain is negative, which
means that this configuration is highly undesirable, which is true. We want more or less homogeneous
individual classes with a heterogeneous merged class.

3.2 Label Based Score

Another scoring method considered was one based on the DFG-In and DFG-Out labels of the se-
quences.

Consider a particular alignment column with two known subsets A and B. Let SA and SB be the
sequence entropies of each subset. Now let us consider the column, not with the amino acid types,
but with the known In/Out labels. Now, for each subset A and B, we can compute another entropy,
S′
A = the entropy of subset A with its I and O labels:

S′
A = − Ain

Atotal
ln(Ain

Atotal
) − Aout

Atotal
ln(Aout

Atotal
)

We calculate a similar entropy for the subset B. Now let us label SA and SB to be the total sequence
entropies, now a good score function would be:

Score = −S′
A − S′

B − SA − SB

The first two terms will push the subsets to match the true In/Out subsets while the next two terms
will push the subsets to have high conservation.

4 Monte Carlo Method

Using the scoring function as described above, we can use a Monte Carlo Method to compute
the best discriminating position for a given sequence alignment.

1

2 from scipy.stats import boltzmann #used for distribution

3 import random

4

5 def entropy(list_input):

6 """ Calculate Shannon ’s Entropy per column of the alignment (H=-\sum_{i=1}^{M} P_i

\,log_2\,P_i)"""

7

8 import math

9 unique_base = set(list_input)

10 M = len(list_input)

11 entropy_list = []

12 # Number of residues in column

13 for base in unique_base:

14 n_i = list_input.count(base) # Number of residues of type i

15 P_i = n_i/float(M) # n_i(Number of residues of type i) / M(Number of residues

in column)

16 entropy_i = P_i*(math.log(P_i ,2))

17 entropy_list.append(entropy_i)

18

19 sh_entropy = -(sum(entropy_list))

20

21 return sh_entropy

22

23 def entropy1(c1, c2):

24 """ Computes entropy of two classes combined while also taking into account the

size of classes """

25 import math

26 unique_base = set(c1).union(set(c2))

27 M1 = len(c1)

28 M2 = len(c2)

29 entropy_list = []

30 # Number of residues in column

31 for base in unique_base:

32 n_1 = c1.count(base) # Number of residues of type i

3

33 n_2 = c2.count(base)

34 if M1 == 0:

35 P_i = n_2/float(M2) # n_i(Number of residues of type i) / M(Number of

residues in column)

36 elif M2 == 0:

37 P_i = n_2/float(M1)

38 else:

39 P_i = n_1/float (2*M1) +n_2/float (2*M2)

40 entropy_i = P_i*(math.log(P_i ,2))

41 entropy_list.append(entropy_i)

42

43 sh_entropy = -(sum(entropy_list))

44

45 return sh_entropy

46

47 def score(S, c1, c2):

48 """

49 Computes the Score for a sequence column by the scoring method

50

51 Input: S = sequence entropy , c1 = class 1, c2 = class 2

52 Output: score of S

53

54 """

55

56 #Currently working on fixing implementation

57

58 c1_list = list(c1.keys())

59 c2_list = list(c2.keys())

60 l_1 = len(c1_list)

61 l_2 = len(c2_list)

62 if c1_list != [] and c2_list != []:

63 I_S = entropy1(c1_list ,c2_list)

64 H_C1 = entropy(c1_list)

65 H_C2 = entropy(c2_list)

66 Score = I_S - H_C1/2 - H_C2/2 #-log(2,2)

67 else:

68 Score = -1000

69 return Score

70

71 def Insertion(S, class_1 , class_2):

72 """ Adds randomly one new X

73 returns class 1 and class 2"""

74

75 #choosing a spot where to put X

76 if len(class_2) > 1:

77 rand_choice = random.sample(set(class_2.keys()) ,1)[0]

78 del class_2[rand_choice]

79

80 class_1[rand_choice] = S[rand_choice]

81

82 return (class_1 ,class_2)

83

84 def Deletion(S, class_1 , class_2):

85 """ Deletes randomly one X

86 returns class 1 and class 2"""

87

88 #choosing a spot where to delete X

89 if len(class_1) > 1:

90 rand_choice = random.sample(set(class_1.keys()) ,1)[0]

91 del class_1[rand_choice]

92

93 class_2[rand_choice] = S[rand_choice]

94

95 return (class_1 ,class_2)

96

97 def Swap(S, class_1 , class_2):

98 """ swap two randomly chosen X

99 returns class 1 and class 2"""

100

101 #choosing spots to swap X

102 if len(class_1) != 0 and len(class_2) != 0:

103 rand_choice1 = random.sample(set(class_1.keys()) ,1)[0]

104 rand_choice2 = random.sample(set(class_2.keys()) ,1)[0]

105

106

107 del class_1[rand_choice1]

4

108 del class_2[rand_choice2]

109

110 class_1[rand_choice2] = S[rand_choice2]

111 class_2[rand_choice1] = S[rand_choice1]

112 return (class_1 ,class_2)

113

114 def MonteCarlo(S, max_iter , threshold):

115 """

116 Computes the discriminating position for a sequence column

117

118 Input: S = sequence column , max_iter = max iterations , threshold = threshold of

acceptance for boltzmann distribution (between 0 and 1)

119 Output: 2 classes

120 """

121 n = len(S)

122 S_copy = S.copy()

123 num_class1 = int (0.30*n) #number in class1

124 print(num_class1)

125 for _ in range(num_class1): #intialisation

126 rand_position = random.randint(0,len(S) -1)

127 while S_copy[rand_position] == ’X’:

128 rand_position = random.randint(0,len(S) -1) #reselect if used position

129 S_copy[rand_position] = ’X’

130

131 #Monte Carlo with Insertions and Deletions

132

133 s_entropy = entropy(S)

134 n_iter = 0 #counter for iterations

135 class_1 = dict() #class 1 determined by X’s

136 class_2 = dict() #class 2 is rest of S

137 for i in range(len(S)):

138 if S_copy[i] == ’X’:

139 class_1[i] =S[i]

140 else:

141 class_2[i] =S[i]

142

143 print("initial class c1: \n")

144 print(class_1)

145 print(’\n initial class c2: \n’)

146 print(class_2)

147

148 res = score(S, class_1 , class_2)

149

150 while n_iter < max_iter:

151 r = random.random ()

152 if r < 0.25: #25% chance to do an insertion

153

154 (c1 ,c2) = Insertion(S, class_1 , class_2)

155

156

157 elif r < 0.5: #25% chance to do a deletion

158

159 (c1 ,c2) = Deletion(S, class_1 , class_2)

160

161 else: # 50% chance to do a swap

162

163 (c1 ,c2) = Swap(S, class_1 , class_2)

164

165 res2 = score(S, c1, c2)

166

167 #Boltzmann Distribution coefficient

168 delta_S = abs(res2 - res)

169 lambda_ , N = 0.2, 19

170 size = 6000

171 ind1 = random.randint(0,size - 1)

172 rv = boltzmann.rvs(lambda_ , N, size=size)/N

173 beta = rv[ind1] #pick float between 0 and 1 with boltzmann distribution

174 if (res2 > res):

175 res = res2

176 class_1 = c1

177 class_2 = c2

178 elif (beta*delta_S > threshold): #if better score i.e. higher entropy gain

179 res = res2

180 class_1 = c1

181 class_2 = c2

182

5

183 n_iter += 1

184 print(res)

185 print("\n")

186 print(c1)

187 print("\n")

188 print(c2)

189

190 print("\n\n")

191

192

193 return class_1 , class_2

194

195 "

Below is an example of sequence alignment as mentioned earlier:

Figure 2: Alignment of amino acid sequences of E.coli thioredoxin and homologues.

6

